Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1067
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArthi G-
dc.contributor.authorBalachandran K-
dc.date.accessioned2020-08-25T04:59:22Z-
dc.date.available2020-08-25T04:59:22Z-
dc.date.issued2014-01-
dc.identifier.issn1751-570X-
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S1751570X13000502-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1067-
dc.description.abstractIn this paper, we examine the controllability problems of certain impulsive differential equations. Sufficient conditions ensuring the controllability of second-order impulsive evolution systems with infinite delay are established. Fixed point approaches are employed for achieving the required results. An example is discussed to illustrate the efficiency of the resulten_US
dc.language.isoenen_US
dc.publisherNonlinear Analysis: Hybrid Systems, ELSEVIERen_US
dc.subjectControllabilityen_US
dc.subjectSecond order evolution systemsen_US
dc.subjectImpulsive differential equationsen_US
dc.subjectInfinite delayen_US
dc.titleCONTROLLABILITY OF SECOND-ORDER IMPULSIVE EVOLUTION SYSTEMS WITH INFINITE DELAYen_US
dc.typeArticleen_US
Appears in Collections:International Journals

Files in This Item:
File Description SizeFormat 
CONTROLLABILITY OF SECOND-ORDER IMPULSIVE EVOLUTION SYSTEMS WITH INFINITE DELAY.docx10.07 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.