Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2958
Full metadata record
DC FieldValueLanguage
dc.contributor.authorM, Kaaviya Shree-
dc.contributor.authorK, Sharmilaa-
dc.date.accessioned2023-06-07T11:01:01Z-
dc.date.available2023-06-07T11:01:01Z-
dc.date.issued2020-04-
dc.identifier.issn2395-0056-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2958-
dc.description.abstractLet be an simple and undirected graph with vertices and edges. Let us define a function is called Skolem Minkowski-4 Mean Labeling of a graph G if we could able to label the vertices with distinct elements from such that it induces an edge labeling defined as, ⌈ ( ) ⌉ is distinct for all edges (i,e.) It indicates that, distinct vertex labeling induces a distinct edge labeling on the graph. The graph which admits Skolem Minkowski-4 Mean Labeling is called a Skolem Minkowski-4 Mean Graph. In this paper, we have investigated the Skolem Minkowski-4 Mean Labeling of some standard graphs like Path, Comb, Caterpillar, , etc.en_US
dc.language.isoen_USen_US
dc.subjectSkolem Minkowski-4 Mean Labelingen_US
dc.subjectSkolem Minkowski-4 Mean Graphen_US
dc.subjectPathen_US
dc.subjectComben_US
dc.subjectCaterpillaren_US
dc.titleSKOLEM MINKOWSKI-4 MEAN LABELING OF GRAPHSen_US
dc.typeArticleen_US
Appears in Collections:International Journals

Files in This Item:
File Description SizeFormat 
SKOLEM MINKOWSKI-4 MEAN LABELING OF GRAPHS.docx10.54 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.