Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/4317
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSathyavikasini, Kalimuthu-
dc.contributor.authorVijaya, Vijayakumar-
dc.date.accessioned2023-11-20T07:18:02Z-
dc.date.available2023-11-20T07:18:02Z-
dc.date.issued2017-08-07-
dc.identifier.urihttps://www.emerald.com/insight/content/doi/10.1108/WJE-09-2016-0075/full/html-
dc.description.abstractDiagnosing genetic neuromuscular disorder such as muscular dystrophy is complicated when the imperfection occurs while splicing. This paper aims in predicting the type of muscular dystrophy from the gene sequences by extracting the well-defined descriptors related to splicing mutations. An automatic model is built to classify the disease through pattern recognition techniques coded in python using scikit-learn framework.en_US
dc.language.isoen_USen_US
dc.publisherEmerald Publishing Limiteden_US
dc.subjectMachine learningen_US
dc.subjectDescriptorsen_US
dc.subjectDisease Identificationen_US
dc.titleSHALLOW LEARNING MODEL FOR DIAGNOSING NEURO MUSCULAR DISORDER FROM SPLICING VARIANTSen_US
dc.typeArticleen_US
Appears in Collections:2.Article (26)

Files in This Item:
File Description SizeFormat 
SHALLOW LEARNING MODEL FOR DIAGNOSING NEURO MUSCULAR DISORDER FROM SPLICING VARIANTS.docx182.84 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.